
RBE 3001 Lab 5 Final Project

Nick Benoit, Mary Hatfalvi, and Daniel Wivagg

Abstract— The final project for RBE 3001 combined forward
and inverse position and velocity kinematics, dynamics, and
vision processing for the control of a 3-DOF robotic arm. The
manipulator was able to pick up objects in a 3-dimensional
workspace and sort them by weight and color. A combination
of MatLab programming skills, robotic control theory, and C++
programming knowledge was required to complete the project.

I. INTRODUCTION

This project was a culmination of work done with kinemat-
ics, force sensing, and manipulation using a 3-DOF robotic
manipulator. The goal was to sort objects in the workspace by
color and weight using strain gauges and computer vision.
First, the gauges were calibrated to return accurate values
of the torque at each joint of the arm based on the unique
properties of the arm and a provided scaling factor. Then, the
camera was configured to search for three colors of objects
in the workspace based on their size and Hue, Saturation,
and Value (HSV) parameters. In order to pick up objects,
a gripper was attached to the end of the manipulator and
programmed to open or close based on a command sent to the
micro-controller’s firmware. Finally, using a state machine
and trajectory generation from previous laboratory exercises,
the arm picked up and sorted objects based on the color and
weight information gathered during the sorting process.

II. METHODS

A. D-H Parameters and Position Kinematics

Forward position kinematics are used to find the arm’s
(x,y,z) position in task space from the joint parameters. For-
ward position kinematics are derived from frame transforma-
tions using D-H parameters. For the 3-DOF arm, configured
as shown to the right in Figure 1, the D-H parameters are
written as follows:

Link α a d θ

1 90 deg 0 l1 q0(t)
∗

2 0 l2 0 q1(t)
∗

3 0 l3 0 q2(t)
∗

4 0 0 0 90 deg

The generalized transformation matrix is a 4x4 matrix with
rotation matrix R position vector P.

T b
a =

[
R P
0 1

]
In this case, the rotation matrix is defined:

R =

cos q(t)∗ − cosα sin q(t)∗ sinα sin q(t)∗

sin q(t)∗ cosα cos q(t)∗ − sinα cos q(t)∗

0 cosα sinα



Fig. 1. 3-Dimensional view of the manipulator

Fig. 2. Side profile view of the manipulator

The position vector can be defined:

P =

a cos(q(t))a sin(q(t))
d


The four transformation matrices are found by evaluating

T b
a with the values for each α, θ, a and d according to the

D-H parameters.

T 1
0 =


cos(q0(t)

∗) 0 sin(q0(t)
∗) 0

sin(q0(t)
∗) 0 − cos(q0(t)

∗) 0
0 1 0 l1
0 0 0 1





T 2
1 =


cos(q1(t)

∗) − sin(q1(t)
∗) 0 l2 cos(q1(t)

∗)
sin(q1(t)

∗) cos(q1(t)
∗) 0 l2 sin(q1(t)

∗)
0 0 1 0
0 0 0 1



T 3
2 =


cos(q2(t)

∗) − sin(q2(t)
∗) 0 l3 cos(q2(t)

∗)
sin(q2(t)

∗) cos(q2(t)
∗) 0 l3 sin(q2(t)

∗)
0 0 1 0
0 0 0 1



T 4
3 =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


The full forward position kinematics is the product of each

link transformation matrix.

T 4
0 = T 1

0 ∗ T 2
1 ∗ T 3

2 ∗ T 4
3

The symbolic transformation matrix was calculated in Mat-
Lab. It was used to model the arm in real time as well as
to find the manipulator Jacobian matrix. The rotation and
position components of this matrix are shown below.

R =

cos(q2 + q3) cos q1 − sin(q2 + q3) cos q1 sin q1
cos(q2 + q3) sin q1 − sin(q2 + q3) sin q1 − cos q1

sin(q2 + q3) cos(q2 + q3) 0


P =

cos q1(l3 cos(q2 + q3) + l2 cos q2
sin q1(l3 cos(q2 + q3) + l2 cos q2
l1 + l3 sin(q2 + q3) + l2 sin q2


To find the inverse position kinematics, links 2 and 3 of the
arm were analyzed in a moving plane as shown Figures 1
and 2. The angular position of this plane (shown in green)
was determined by the position of link 1. To determine all
of the joint values from task space coordinates, the radius
had to be calculated first. This value is the vector from the
origin to the desired (x,y) position of the tip.

r =
√
P 2
x + P 2

y

The angular position of the plane, or of the first joint, was
calculated based on the x- and y-coordinates of the task-space
position.

q0 = arctan
Px

Py

The β and γ values in Figure 2 were necessary for defining
q1, which usually could be expressed as one of two differ-
ent values based on whether the elbow-up or elbow-down
configuration was desired.

β = arctan
r

l1 − Pz

γ = arccos
(l1 − Pz)

2 + r2 + l23 − l22

2l2
√
(l1 − Pz)2 + r2

With these values calculated, links two and three could be
treated as a two degree of freedom arm. The angle of the

elbow joint was calculated first, and then the angle of the
shoulder was calculated.

q1 = β ± γ

q2 = arccos
(l1 − Pz)

2 + r2 + l23 − l22
2l2l3

On top of using these equations, the MatLab code required
failsafes to prevent the arm from being set to an impossible
configuration. To guard against this, try-catch statements in
MatLab were utilized to prevent the function from being used
with values that were outside the robots physical boundaries
of motion. Also, if imaginary values were returned, an
error was thrown to prevent the rest of the program from
terminating.

Finally, the algorithm decided between elbow-up and
elbow-down configurations by assessing the positions of the
other links, which were calculated first. In some cases, elbow
down would have resulted in an impossible setpoint for the
second link, due to the base and ground beneath the robot.
Setpoints outside of the robots workspace and trajectories
that would collide with the camera stand were avoided using
try-catch statements in MatLab.

B. Manipulator Jacobian and Velocity Kinematics

One method of navigating to coordinates in task space
without using inverse position kinematics is through inverse
velocity kinematics. In this method, the robot is given a
direction to move in at a desired speed, rather than a stream
of setpoints. The forward and inverse velocity kinematics are
found through the 3x1 manipulator Jacobian matrix.

~̇x = J(q)~̇q
~̇q = J(q)−1~̇x

The Jacobian was calculated symbolically through Mat-
Lab, and can be expressed through the following set of
matrices.

J(q) =
[
J1 J2 J3

]
J1 =

− sin q1(l3 cos(q2 + q3) + l2 cos q2)
cos q1(l3 cos(q2 + q3) + l2 cos q2)

0



J2 =

− cos q1(l3 sin(q2 + q3) + l2 sin q2)
− sin q1(l3 sin(q2 + q3) + l2 sin q2)

l3 cos(q2 + q3) + l2 cos q2



J3 =

−l3 sin(q2 + q3) cos q1
−l3 sin(q2 + q3) sin q1

l3 cos(q2 + q3)


Although velocity kinematics can be useful for avoiding
more complex and geometrically confusing calculations, they
were not necessary to complete this lab because inverse po-
sition kinematics were simply more effective. However, the
manipulator Jacobian was still required for other calculations
such as the task-space force calculation.



C. Force Vector Calculation

In order to convert from a set of torques in joint space
to a task space velocity vector, the manipulator Jacobian
found above was used. Using a strain gauge located at each
joint, the force applied at the tip of the manipulator could be
determined. The force vector is found using the transpose of
the Jacobian in the equation shown below. To convert from
joint space to task space force, the inverse of the transpose
is required.

~τ = J(q)T ~Ftip

~Ftip = (J(q)T )−1~τ

This equation was implemented in a MatLab function to
calculate the force at the tip based on the readings from
the strain gauges. These readings were smoothed with a
rolling average in the robot’s firmware to ensure a steady
and accurate tip force vector.

D. Trajectory Planning

The trajectory planning was calculated through the cubic
polynomial equation given as:

q(t) = a0 + a1t+ a2t
2 + a3t

3

q̇(t) = a1 + 2a2t+ 3a3t
2

q̈(t) = 2a2 + 6a3t

The velocity equation is the derivative of the position equa-
tion and the acceleration equation is the derivative of the
velocity equation. The constants a0, a1, a2,and a3 are found
through the matrix equation with the following constraints:

• t0 is the start time
• tf is the final time
• q0 is the start position
• qf is the final position
• v0 is the start velocity
• vf is the final velocity

The trajectory equations can be expressed in matrix form
using these parameters like so:

1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f



a0
a1
a2
a3

 =


q0
v0
qf
vf


This matrix was implemented within a function in MatLab
to create a trajectory for the x, y, and z directions of motion.
The function used the equation for q(t) to generate setpoints
for a path with a desired time step between each point. These
setpoints passed through the desired target points, so the arm
traveled through each one in order to follow the trajectory.

E. Object Detection

The camera was used to detect a dynamic number of
objects at random positions in the robot’s workspace. To
detect an object, the camera would capture a still image at
the beginning of each sorting operation, as shown in figure
3. Using the Color Thresholder app in MatLab, a set of
three masks were created for blue, green, and yellow objects.
Each mask was tailored to the hue, saturation, and value of

Fig. 3. Still image of robot’s workspace

one object. By applying these masks in succession, a binary
image of each color was created for the workspace. Due
to the similarity between the color of the sorting objects
and objects near the robot’s workspace two filters were
employed to reduce the likelihood of a false positive. A size
filter was used to remove detected objects with less than 60
pixels, and an area filter was used to crop off regions of
the image outside the workspace. This reduced the noise in
the binary images. The centroid for objects of each color
were calculated separately using the cleaned binary images
for each color, as shown in Figure 4. The location of the

Fig. 4. Binary image created using blue mask

centroids in pixels was converted to workspace coordinates.

F. Sorting Plan

In order to sort the objects consistently, the robot was
configured to sort according to a pre-determined pattern. As
shown in Figure 5, the robot placed heavy objects to the right
of the workspace and light objects to the left. Blue objects
were placed at the top, green in the middle, and yellow at
the bottom.

The sorting process consisted of four distinct steps:
1) Locate objects in the workspace
2) Grab one object (first blue, then green, then yellow)
3) Weigh the object at the weighing configuration
4) Sort the object as shown in Figure 5

These steps are represented in the state machine used to
control the flow of the sorting program, shown in Figure
6.

III. RESULTS

The implementation of this lab required us to successfully
synthesize and modify portions of previous labs, as well as



Fig. 5. Method of sorting objects by weight and color

Fig. 6. State Machine process

create entirely new functions. Building off of our work in
lab 4, we created functions to weigh the workspace objects.
Displaying the force vector in our live model was vexing.
The method we used to average the force readings caused
the displayed vector to lag. We also struggled to display
the vector in the correct coordinate frame, but ultimately we
were able to successfully implement a force vector in the
live model.

The figures below show the force vector on a live 3-D plot
of the arm. The live plot shows the robot’s workspace range
with dashed circles, and the links of the arm are colored
blue, red, and cyan. The force vector is drawn from the tip
of the third link in the direction of the force, with its length
representing the magnitude of the force. Figure 7 shows the
force vector measured with a 2N weight gripped by the robot.
Figure 8 shows the force vector measured with no weight at
the tip. The force vector from the arm with the 2N mass is
larger than the force vector from the arm without a mass.

After implementing force reading capability, we logged
the positions and forces in each direction as the robot passed
through 10 different setpoints holding a heavy weight. The

Fig. 7. 3-D Plot of 2N on tip of arm

Fig. 8. 3-D Plot of no force on tip of arm

position graphs depicted the motions of the links and the
slope of these lines show the velocities. The forces roughly
corresponded with the motion of the robot. We also recorded
the magnitude of the force applied to the tip, which was
relatively constant with some spikes in the data as the robot
made quicker motions. The data collected is included in the
Appendix and shown in Figure 12 of this report.

Our functions for determining the color and location of
objects in the workspace were modified from lab 3, and they
performed well. The robot accurately detected the color of
objects during each sorting operation. The robot struggled,
however, to find the exact location of the centroid. This was
due to the angle of the camera in relation to the workspace,
causing the robot to consistently miss the objects by about
2 centimeters in the Z direction.

Figure 3 above depicts the workspace from the camera
view with one blue object, one yellow object, and one green
object. The image is processed using one mask for each
color and two filters to create clean binary images. The
masks remove pixels that are not within the specified hue,
saturation, and value range. A size filter removed objects of
less than 60 pixels to reduce noise, and an area filter removed



all pixels outside of the designated workspace. These two
filters removed noise from the binary images and reduced
the chance of reporting the centroid of a non-object.

The figures below show binary images for each color
object: blue, green, and yellow. The binary images only
contain pixels with value of 0 or 1. By converting the image
from full color to binary, it is easier for the program to
distinguish objects from their environment. Figure 9 shows
the binary image created using the blue mask. The only
pixels with a value of 1 are those that had HSV values
within our defined tolerances and were within the robot’s
workspace. Figure 10 and Figure 11 below show sample
binary images created using the green and yellow color
masks, respectively.

Fig. 9. Binary image created using blue mask

Fig. 10. Binary image created using green mask

From these figures it is easy to see how the color masks
and filters turn complicated, color images into simple binary
images that can be used to determine centroids of objects.

The robot also encountered issues while moving to pick up
the objects and frequently stalled very close to the objects.
This was caused by our use of static PID gains to control
the robot’s motion. The robot was able to pick up and
hold objects without dropping them every sorting operation,
and placed the objects in the correct area with 100 percent
accuracy.

IV. DISCUSSION

The most lengthy and challenging portion of the project
was correctly displaying the force vector. Although the ma-

Fig. 11. Binary image created using yellow mask

nipulator Jacobian and associated parameters were calculated
correctly, the output was consistently wrong. Hand calcula-
tions and tests with the forward Jacobian did not reveal an
obvious cause for the errors. Ultimately, we determined that
the frame rotation at the tip was not accounted for and the
force vector simply needed to be rotated to be correct.

Another difficulty was found in correctly calibrating the
camera because it was replaced between lab 3 and lab 5
with a broken, green-aliasing camera. It was not enough to
carefully tune the HSV parameters to detect blue, green, and
yellow objects. The only way to mitigate camera issues was
to situate a bright lamp above the workspace so that colors
could be distinguished correctly. The lamp also created a
uniform bright light which was more consistent than the
lighting in the environment.

These setbacks were surpassed and the robot successfully
identified and sorted objects, but the process was not perfect.
At some points during a trajectory, the robot stalled because
the PID gains were not high enough to move it out of its
position. This is because the general gains were only set
once at the beginning of the program, and were suboptimal
for certain configurations where the robot required greater
gains. If we had increased the gains for the entire program,
the system would have become unstable. Using the PID setter
command we developed for the packet processor, we could
have updated them dynamically for different robot positions.
If there was more time, this would have been the ideal way
to program the robot. Instead, we compensated for any errors
by manually assisting the robot if it got stuck.

Another process imperfection was the slight error in the
camera coordinates during image processing. Since the cam-
era viewed the workspace from an angle instead of directly
overhead, the centroids returned were not a perfect reflec-
tion of the object’s task space position. If there was more
time, some tweaking of the camera calculations and (x,y)
coordinates would have made the process more accurate. The
temporary solution used was to slide the objects a centimeter
or two so they were positioned directly under the gripper.

V. CONCLUSIONS

All of the essential components of this lab were completed
successfully. The robot was able to pick up and sort a



blue, yellow, or green colored object using computer vision,
inverse kinematics, force sensing and trajectory planning.
Future tasks to improve the functionality would include
programming a more accurate object identification algorithm,
dynamically updating PID gains, and implementing gravity
compensation. Using a technique such as Kalman filtering or
another similar algorithm would make the force sensing more
accurate. However, given the time limitations of this project,
it was largely effective at its tasks. The combination of hard-
ware, electrical, and programming skills required presented
a reasonable challenge that mimicked real-world robotics in
an interesting way. The introduction to trajectory planning,
robot kinematics, and computer vision will undoubtedly be
useful in future classes and projects.

APPENDIX

The charts shown in Figure 12 below depict the position,
force, and magnitude of force applied at the tip as the
manipulator moves through 10 different setpoints.

ACKNOWLEDGMENT

We would like to thank the RBE 3001 course staff for their
help with completing this project and debugging hardware
and software issues. We would also like to acknowledge Pro-
fessor Greg Fischer for his role in teaching the fundamental
mathematics required to program the manipulator.



Fig. 12. Position, Force, and Magnitude through 10 setpoints


